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Studying random differential equations as a tool for turbulent diffusion
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A modification of Kraichnan’s direct interaction approximation~DIA ! @R. H. Kraichnan, J. Math. Phys.2,
124 ~1961!# for random linear partial differential equations is proposed. The approximation is tested on the
specific example of the turbulent advection of a scalar quantity by a random velocity field. It is shown to
account for the sweeping more correctly than the DIA. As a result, it is valid for all times and it is able to
describe nonstandard diffusive processes~i.e., superdiffusive and non-Gaussian! for which the DIA is not
valid. @S1063-651X~98!50111-0#

PACS number~s!: 47.27.Qb, 02.50.Ey, 05.40.1j, 47.27.Te
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Stochastic modeling plays an important role in ma
branches of physics. Generally, it amounts to studying
following linear partial differential equation for the scal
quantity r(r,t) evolving on thed-dimensional phase spac
$r%:

]

]t
r~ t !5 l S r,

]

]r
,t D r~ t !, ~1!

where the operatorl (r,]/]r,t) is random with specified sta
tistics. With appropriate identification, Eq.~1! may model a
wide variety of physical situations. Just to mention one
particular interest, Eq.~1! may be the Liouville or the
Fokker-Planck equation associated with a set of randomnon-
linear ordinary differential equations, and the method p
sented below may thus serve studying these equation
well. The complete solution of Eq.~1! amounts to determin
ing the statistics ofr(t). Here, we shall determine only th
mean valuê r(t)&, which is of special interest since it fixe
the one-point statistics of any quantity evolving on the ph
space$r%. Despite the linear character of Eq.~1!, averaging
of this equation leads to the highly nontrivial closure pro
lem of determining^ l (t)r(t)&. One of the most powerfu
approximations for the solution of this problem is Kraic
nan’s direct interaction approximation~DIA ! @1#. However,
the DIA has the defect that it misrepresents the sweep
that is, the effect of the large scales ofl (t) on the small
scales ofr(t). In particular, the DIA is not valid for shor
times, and gives reliable information on the asymptotic d
namics of̂ r(t)& only if the sweeping becomes negligible
t→`, which need not be the case. In this Rapid Commu
cation, we propose an approximation, referred to as
modified direct interaction approximation~MDIA ! which ac-
counts for the sweeping more correctly than the DIA.
particular, the MDIA is valid for all times and is asymptot
cally equivalent to the DIA only if the sweeping is negligib
as t→`. Since the MDIA is worked out in the Euleria
frame, it is an interesting alternative to the complicated L
grangian modifications of the DIA@3#.

We shall present the MDIA for the general case, th
apply it on the problem of the passive advection of a sca
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quantity by a three dimensional incompressible random
locity field, a problem that arises in many contexts~mass,
charge, and heat transport in turbulent fluid, in porous me
etc.! Then Eq.~1! specializes to

]

]t
r~ t !52v~r,t !•“r~ t !1D0Dr~ t !, ~2!

whereD0 is the molecular diffusion coefficient and the v
locity v(r,t) is taken to be a Gaussian random process,
tistically isotropic~hence zero-mean and homogeneous! and
stationary. Then, the statistics ofv(r,t) are fully specified by
the scalar covariance (r 25r•r),

^v~r1r8,t1t8!•v~r8,t8!&[2E
0

`

dk
sin~kr !

kr
E~k,t !.

The quantityE(k,t) will be referred to as the energy spe
trum. By definition, it is normalized as

E
0

`

dkE~k,0!5
3

2
v!

2 , ~3!

wherev! is the root-mean-square velocity in any directio
and, usingE(k,t), we shall measure characteristic lengt
scalel ! and time-scalet! of the velocity from

l !
25E

0

`

dk
E~k,0!

v!
2k2 , t!5E

0

`

dtE
0

`

dk
E~k,t !

v!
2 . ~4!

Note that we donot require that these integrals be finite; w
may havel !5`, meaning that much of the energy is co
centrated in the large scales ofv(r,t), or t!5`, meaning
that v(r,t) has no effective decorrelation with time. As a
plied to Eq.~2!, we will show that the MDIA is valid for all
times since it accounts correctly for the sweeping effec
Furthermore, according to the MDIA, the asymptotic dyna
ics of ^r(t)& depends dramatically onl ! andt! . Specifically,
provided only that eitherl ! or t! is finite, the MDIA equation
for ^r(t)& reduces, ast→`, to a diffusion equation with an
effective diffusion coefficientD! which, in the limit D!

@D0 , depends on some combination ofv! , l ! and t! only
@see Eq.~22!#. However, if bothl ! and t! are infinite, the
MDIA equation never reduces to a diffusion equatio
R5229 © 1998 The American Physical Society
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the asymptotic dynamic is superdiffusive and non-Gauss
and we will be able to quantify both these features@see Eqs.
~23! and ~24!#. In particular, sincel !5` in the superdiffu-
sive range, the large scale effects are essential, the swee
is never negligible and, hence, the DIA cannot be used.

We now present the MDIA for Eq.~1!. To this end, we
introduce first the evolution operatorh(tut8) defined as

r~r,t !5h~ tut0!r0~r!. ~5!

Applying h(tut8) to the distributiond(r2r8) defines the
Green function of Eq.~1!: g(r,tur8,t8)[h(tut8)d(r2r8).
The operatorh(tut8) satisfies Eq.~1!, which we write as

]

]t
h~ tut8!5@L~ t !1l l̃ ~ t !#h~ tut8!, ~6!

with the initial conditionh(tut)5I , I being the identity op-
erator. In Eq.~6!, l is an ordering parameter introduced f
convenience and we have decomposedl (t) into an averaged
and a purely random part:L(t)5^ l (t)& and l l̃ (t)5 l (t)
2L(t). We shall derive from Eq.~6! an equation for
H(tut8)[^h(tut8)&; from Eq. ~5!, we have ^r(r,t)&
5H(tut0)r0(r) @assuming thatr0(r) is deterministic# and
H(tut8) is related to the averaged Green functionG[^g& of
Eq. ~1! as G(r,tur8,t8)[H(tut8)d(r2r8). Introducing the
operatorH0(tut8) satisfying

]

]t
H0~ tut8!5L~ t !H0~ tut8!, H0~ tut !5I , ~7!

it follows that Eq.~6! may be rewritten as

h~ tut8!5H0~ tut8!1lE
t8

t

dsH0~ tus! l̃ ~s!h~sut8!. ~8!

Upon iterating and averaging, Eq.~8! leads to the following
infinite perturbation series expansion forH(tut8):

H~ tut8!5H0~ tut8!1l2H2~ tut8!1l3H3~ tut8!1¯ , ~9!

whereH0(tut8) was defined in Eq.~7! and, e.g.,

H2~ tut8!5E
t8

t

dsE
t8

s

ds8H0~sus8!

3^ l̃ ~s!H0~sus8! l̃ ~s8!&H0~s8ut8!. ~10!

Truncation of Eq.~9! at any order yields an approximatio
for H(tut8) only valid on a finite time interval. Improvemen
is obtained by partial resummation~or renormalization! of
the series~9!. One way to proceed is as follows. Consider t
following two equations forH(tut8):

]

]t
H~ tut8!5L~ t !H~ tut8!1l2E

t8

t

dsQ~ t,s!H~sut8!,

~11a!

]

]t
H~ tut8!5L~ t !H~ tut8!1l2P~ t,t8!H~ tut8!. ~11b!

With appropriate definitions for the operatorQ(t,t8) and
P(t,t8) both equations are exact even if formal, since ex
n,

ing

t

evaluation of Q(t,t8) and P(t,t8) is restricted to some
simple cases. Yet, it may be proven that renormalization
the series~9! may be achieved by appropriate approxim
tions for Q(t,t8) or P(t,t8). Kraichnan’s DIA is one such
approximation forQ(t,t8) @see Eq.~15a!#. In this Rapid
Communication, we shall rather work with Eq.~11b! and the
MDIA will be obtained as some approximation forP(t,t8)
@see Eq.~15b!#. The expansions ofQ(t,t8) andP(t,t8) may
be easily found from that ofH(tut8) and Eq.~11!

l2Q~ t,t8!5l2Q2~ t,t8!1l3Q3~ t,t8!1¯ , ~12a!

l2P~ t,t8!5l2P2~ t,t8!1l3P3~ t,t8!1¯ , ~12b!

where up to orderl2

Q2~ t,t8!5^ l̃ ~ t !H0~ tut8! l̃ ~ t8!&, ~13a!

P2~ t,t8!5E
t8

t

dŝ l̃ ~ t !H0~ tus! l̃ ~s!&H0
21~ tus!. ~13b!

In Eq. ~13b!, the operatorH0
21(tut8) is the inverse of

H0(tut8) @i.e., H0(tut8)H0
21(tut8)5H0

21(tut8)H0(tut8)5I ].
Expansion~12b! is the so-called time-ordered cumulant e
pansion@2#. Truncation of Eqs.~12a! and ~12b! at orderl2

leads respectively to the quasinormal approximation~QNA!
and the quasilinear approximation~QLA!. Roughly, both
these approximations are valid for all times ifH(tut8)
evolves on a time scale that is much longer than the t
scale associated withl̃ (t). For approximations based on E
~11a!, it is well-known that reworking the series forQ(t,t8)
as a series inH(tut8) rather thanH0(tut8) leads to improved
approximations, since it achieves a further resummation
the original series~9!. We claim that a similar improvemen
is obtained for approximations based on Eq.~11b! by re-
working the series forP(t,t8) as a series inH(tut8) rather
than H0(tut8), since it also achieves a further resummati
of the series~9!. This gives

l2Q~ t,t8!5l2Q̄2~ t,t8!1l3Q̄3~ t,t8!1¯ , ~14a!

l2P~ t,t8!5l2P̄2~ t,t8!1l3P̄3~ t,t8!1¯ , ~14b!

where up to orderl2

Q̄2~ t,t8!5^ l̃ ~ t !H~ tut8! l̃ ~ t8!&, ~15a!

P̄2~ t,t8!5E
t8

t

dŝ l̃ ~ t !H~ tus! l̃ ~s!&H21~ tus!, ~15b!

In Eq. ~15b!, the operatorH21(tut8) is the inverse ofH(tut8)
@i.e., H(tut8)H21(tut8)5H21(tut8)H(tut8)5I ]. Truncation
of Eq. ~14a! at orderl2 is the DIA; truncation of Eq.~14b! at
orderl2 will be referred to as the MDIA. Explicit equation
for ^r(r,t)& or G(r,tur8,t8) may be obtained by applying Eq
~11! on r0(r) or d(r2r8), respectively.

The MDIA deserves the following comments:
~i! The MDIA is a well-defined approximation eve

though the averaged dynamics is usually irreversible and
inverse evolution operator H21(tut8) appears in Eq. (15b).
In particular, the reversibility ofH(tut8), which we assume
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here, does not require the averaged dynamics to be rev
ible. Of course, for irreversible dynamics, the inverse of
averaged Green function, which would be defined
G21(r,tur8,t8)[H21(tut8)d(r2r8), does not exist, meanin
simply thatd(r2r8) does not belong to the domain of de
nition of the operatorH21(tut8). Yet, this leads to no diffi-
culty for the MDIA becaused(r2r8) belongs to the domain
of definition of the operatorH21(tus)H(tut8), since t8<s
<t.

~ii ! The MDIA and the DIA are asymptotically equivale
if and only if the averaged dynamics is approximately M
kovian as t→`. Non-Markovianity is H(tut8)
ÞH(tut9)H(t9ut8) (t>t9>t8) and is implied by both the
DIA and the MDIA @unlessl (t) is a white-noise process an
even thoughh(tut8)5h(tut9)h(t9ut8) by definition#. Thus,
the termH21(tus)H(tut8) in the MDIA equation cannot be
approximated by the termH(sut8) in the DIA equation un-
less the averaged dynamics becomes Markovian ast→`.
Below, we relate the relaxation to Markovianity to the a
sence of sweeping ast→`.

~iii ! In contrast with the DIA, the MDIA is valid for the
short times.Direct calculation shows that, in contrast wi
the DIA, the MDIA is exact for a Gaussianl (t) in Eq. ~1! as
long as the following local approximation is valid
l (r,]/]r,t)' l (r8,]/]r,t), wherer8 is some fixed position in
phase space. Since initiallyg(r,tur8,t)5d(r2r8), this local
approximation is valid on some time interval, and the MD
is indeed valid for the short times.

~iv! The MDIA accounts for the sweeping more correc
than the DIA.First, it results from point~iii ! that, in contrast
with the DIA, the MDIA is exact for pure sweeping; that i
if l (r,]/]r,t)[ l (]/]r,t), Gaussian. Second, since the MDI
is local in time ~and not convolutive, like the DIA!, it ap-
pears to account more correctly than the DIA for the aver
effect of a so-called random Galilean transformation~RGT!
@3#; that is, l (r,]/]r,t)→ l (r2vt,]/]r,t)2v•]/]r, where
the constantv is some Gaussian random variable statistica
independent onl (t). Note however that since the MDIA i
worked out in an Eulerian and not a Lagrangian frame
cannot account exactly for a RGT.

As an illustration, we now apply the MDIA on Eq.~2!,
i.e., on the specific problem of the advection a scalar quan
by a random velocity field~for the predictions of the DIA,
see, e.g., Ref.@4#!. Owing to the statistical isotropy and sta
tionarity of the velocity fieldv(r,t), it follows that H(tut8)
5H(t2t8) and H(t)d(r2r8)5G(ur2r8u,t). Here G(r ,t)
may be interpreted as the probability density that a part
randomly advected byv(r,t) and subject to molecular diffu
sion is inr1r8 at time t1t8 if it was in r8 at time t8. Also,
the average of the solution of Eq.~2! is ^r(r,t)&
5*dr8G(ur2r8u,t2t0)r0(r8). Introducing the Fourier rep
resentation

Ĝ~k,t !54pE
0

`

drr 2
sin~kr !

kr
G~r ,t !,

the MDIA leads after some manipulations to

]

]t
Ĝ~k,t !52k2@D01h~k,t !#Ĝ~k,t !, ~16!
rs-
e
s

-

-

e

y

it

ty

le

with the initial conditionsĜ(k,0)51 and where

h~k,t !5E
0

t

dsE
0

`

dppK~k,p,s!
Ĝ~p,s!

Ĝ~k,s!
, ~17!

K~k,p,t !5
2

p E
uk2pu

k1p

dq
sin2~k,q!

kq
E~q,t !, ~18!

in which sin(k,q) is the sine of the interior angle opposite
p in a triangle of sidesk, p andq.

As a first straightforward consequence of Eq.~16!, we
note that for a pure sweeping flow,v(r,t)[v(t), for which
E(k,t)5 1

2 d(k)^v(t)•v(0)&, the MDIA is exact since it
leads to the Gaussian

Ĝ~k,t !5e2k2D0t2k2w~ t !, ~19!

wherew(t)5 2
3 *0

t ds(t2s)^v(s)•v(0)&. In contrast, the DIA
equations are wrong in this case: they can be solved ana
cally in the time representation only for a time-independ
sweeping flow, v(r,t)[v, where they lead toĜ(k,t)
5J1(2kv!t)/(kv!t) @here,J1(x) is a modified Bessel func
tion# @4#, while the exact result~19! is in this caseĜ(k,t)

5e2k2D0t2(1/2)k2v!
2t2. Note also that, ift is small enough,

Ĝ(k,t) is mostly flat compared to the spectrumE(k,t), and
the flow can be approximated by a pure sweeping flow. C
sequently, in contrast with the DIA, the MDIA is valid fo
the short times.

To further argue that the MDIA accounts correctly for th
sweeping, we consider the effect on Eq.~16! of the RGT
v(r,t)→v̄(r,t)[v(r2ut,t)1u, where the constant velocity
u is a statistically isotropic Gaussian random variable, sta
tically independent onv(r,t) and whose mean square valu
in any direction isu!

2. The RGT adds a term2k2u!
2Ĝ(k,t)

on the right-hand-side of Eq.~16!, and from Eq.~17! it fol-
lows that the effect of the transformation may be accoun
for by Ĝ(k,t)→Ḡ(k,t)[b(k,t)Ĝ(k,t) for some factor
b(k,t). Furthermore, direct calculations from Eqs.~16!–~18!
show that for both short and asymptotic times,b(k,t) re-
duces to the exact form it must have,

b~k,t !5e2~1/2!k2u!
2t2, ~20!

Equation~20! should be observed for all times@3#. However,
for intermediate times, the MDIA predicts~very! small de-
parture ofb(k,t) from the Gaussian factor~20!.

Consider now the asymptotic solution of Eq.~16!. Since
Ĝ(k,t) becomes more and more peaked aroundk50 as time
goes on, the long time solution of Eq.~16! mainly depends
@via the factorpK(k,p,t)] on the leading term of the serie
expansion ink50 of the energy spectrum. Without losin
much in generality, we shall take

E~k,t !.v!
2l!~l!k!au~ t/t!!, l!k!1, ~21!

for some functionu(t/t!). Strictly speaking, we should re
strict to the range21,a in order to ensure thek integra-
bility of E(k,t); however, owing to the normalization~3! of
E(k,t), the limit a521 of Eq. ~21! can be interpreted a



s
st

t

e

ic

e
q.
d

d

this

.
s

-
um-
le.
that

r
is
he
e

ge
e

nge
-

n-
, in
-

ical

om

his
for

RAPID COMMUNICATIONS

R5232 PRE 58E. VANDEN EIJNDEN
corresponding to a pure sweeping field for whichE(k,t)
5 3

2 v!
2d(k)u(t/t!). In Eq. ~21!, l! and t! have, respec-

tively, the dimensions of a length and of a time, but the
quantities should not be confused with the characteri
length scalel ! and time scalet! introduced in Eq.~4!. Spe-
cifically, l! may only be identified withl ! if the correspond-
ing integral in Eq.~4! is finite; that is, if 1,a in Eq. ~21!. In
contrast, l !5` if 21<a<1. Similarly t! may only be
identified with t! if u(t/t!) is integrable.

Using Eq. ~21! in Eqs. ~16!–~18!, one may show tha
Ĝ(k,t) is asymptotically self-similar on all thek range
where this function differs significantly from zero, in th
sense that fort@min$l! /v! ,t!% it scales like

Ĝ~k,t !; f̂ @kA^z2~ t !&#,

wherez(t) is the particle displacement at timet measured in
any particular direction. The explicit forms of^z2(t)& and
f̂ (x) depend on the spectrum. Provided only that eithert! or
l ! are finite, they are

^z2~ t !&;2D!t, f̂ ~x!5e2x2/2. ~22!

Thus, the process is Gaussian and diffusive ast→`, and
G(r ,t) satisfies a standard diffusion equation. The expl
value ofD! depends onE(k,t) andD0 , but if D0!D! , its
scales as D!}v!

2t! if t! at least is finite and t!

!min$l! ,l!%/v! , and asD!}v!l ! if l ! at least is finite and
l !!v! min$t! ,t!%. This second scaling is missed by th
QNA and the QLA, but is predicted by the DIA. Indeed, E
~22! implies that the motion is asymptotically Markovian an
the MDIA and the DIA are thus equivalent ast→`. Note
also that the finiteness ofl ! may be proven necessary an
sufficient for standard diffusion ifE(k,t)5E(k) ~i.e., t!

5`) andD0.0 @5#.
On the other hand, if bothl !5` and t!5`, we obtain

the superdiffusive scalings

^z2~ t !&; c̃v!l!tAln~v!t/l!! ~a51!,
~23!

^z2~ t !&; c̃l!
2~v!t/l!!4/~31a! ~21<a,1!,
e
ic

it

wherec̃.0 is a numerical constant. The expression forf̂ (x)
is rather cumbersome in this case, but we may prove that
function tends towards the Gaussian e2x2/2 in both the limits
a51 anda521 @the latter limit is exact; we recover Eq
~19! for the pure sweeping flow#. Furthermore, the departure
from Gaussianity are rather weak in all the range21,a
,1, with a maximum arounda50, and may be quantified
by the flatness factor, which is estimated as

lim
t→`

^z4~ t !&
3^z2~ t !&2 512

12a2

5~52a!
<1. ~24!

Thus, the distributionG(r ,t) has less weight in the tail be
yond its mean than a Gaussian distribution, an effect pres
ably related to some amounts of trapping of the partic
Higher moments can be estimated as well, and suggest
G(r ,t) is approximately Gaussian forr of the order of
^z2(t)& but has the shape of a quenched exponential for
@^z2(t)& ~we were unable to give a rigorous proof of th
point, however!. Note also that in the present range, t
MDIA is not asymptotically equivalent to the DIA since th
dynamics is not Markovian ast→`. Of course, since the
sweeping is never negligible here, the DIA is out of its ran
of validity @6#. Specifically, even though the DIA leads to th
scalings~23! for the particle mean square displacement@4#, it
overestimates the departure from Gaussianity in all the ra
21<a,1, and, in particular, it fails to predict the relax
ation towards Gaussianity in the limita51.

Since the MDIA is exact for short times and gives reaso
able results for long times, it leads to the confidence that
contrast with the DIA, it is valid for all times. This conclu
sion can be confirmed by numerical integration of Eq.~16!.
For instance, for flows leading to standard diffusion, Eq.~16!
reproduces for all times the results observed in the numer
simulations of particles motion in random flows@4#, and, in
particular, it accounts for the observed departures fr
Gaussianity at intermediate times~with a flatness factor
smaller than 1!.

R. Balescu played an essential role in the evolution of t
work. I express sincere thanks to D. Carati and A. Grecos
helpful discussions and criticisms.
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