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Studying random differential equations as a tool for turbulent diffusion
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A modification of Kraichnan’s direct interaction approximati@lA) [R. H. Kraichnan, J. Math. Phyg,
124 (1961)] for random linear partial differential equations is proposed. The approximation is tested on the
specific example of the turbulent advection of a scalar quantity by a random velocity field. It is shown to
account for the sweeping more correctly than the DIA. As a result, it is valid for all times and it is able to
describe nonstandard diffusive procesg§es., superdiffusive and non-Gaussidor which the DIA is not
valid. [S1063-651X98)50111-0

PACS numbes): 47.27.Qb, 02.50.Ey, 05.48j, 47.27.Te

Stochastic modeling plays an important role in manyquantity by a three dimensional incompressible random ve-
branches of physics. Generally, it amounts to studying théocity field, a problem that arises in many conteftsass,
following linear partial differential equation for the scalar charge, and heat transport in turbulent fluid, in porous media,
guantity p(r,t) evolving on thed-dimensional phase space etc) Then Eq.(1) specializes to

{r}:

J
p) SiP(O=—v(r,1)-Vp(t) +DoAp(1), 2
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J
(t)=|(r,— t
whereDy, is the molecular diffusion coefficient and the ve-
where the operatdi(r,d/dr,t) is random with specified sta- locity v(r,t) is taken to be a Gaussian random process, sta-
tistics. With appropriate identification, E¢L) may model a tistically isotropic(hence zero-mean and homogengaard
wide variety of physical situations. Just to mention one ofstationary. Then, the statistics ofr,t) are fully specified by
particular interest, Eq(1) may be the Liouville or the the scalar covariance{=r-r),
Fokker-Planck equation associated with a set of random )
linear ordinary differential equations,.and the methoq pre- (v(r+r’,t+t’)-v(r’,t')>52fmdk sin(kr) E(k.1).
sented below may thus serve studying these equations as 0 kr
well. The complete solution of Eq1) amounts to determin-
ing the statistics op(t). Here, we shall determine only the The quantityE(k,t) will be referred to as the energy spec-
mean valug p(t)), which is of special interest since it fixes trum. By definition, it is normalized as
the one-point statistics of any quantity evolving on the phase
space{r}. Despite the linear character of Ed.), averaging fwdkE(k 0)= §Uz @)
of this equation leads to the highly nontrivial closure prob- 0 ' 27"
lem of determining(l(t)p(t)). One of the most powerful
approximations for the solution of this problem is Kraich- wherev, is the root-mean-square velocity in any direction,
nan’s direct interaction approximatidiIA) [1]. However, and, usingE(k,t), we shall measure characteristic length-
the DIA has the defect that it misrepresents the sweepingicalel, and time-scalé¢, of the velocity from
that is, the effect of the large scales I¢t) on the small
scales ofp(t). In particular, the DIA is not valid for short 12— fw K E(k,0 = fxdtfwdk E(k,t) @
times, and gives reliable information on the asymptotic dy- * Jo vk o 0 v
namics of(p(t)) only if the sweeping becomes negligible as
t—co, which need not be the case. In this Rapid CommuniNote that we daot require that these integrals be finite; we
cation, we propose an approximation, referred to as thenay havel, =, meaning that much of the energy is con-
modified direct interaction approximatigvDIA) which ac-  centrated in the large scales ofr,t), or t,=o, meaning
counts for the sweeping more correctly than the DIA. Inthatv(r,t) has no effective decorrelation with time. As ap-
particular, the MDIA is valid for all times and is asymptoti- plied to Eq.(2), we will show that the MDIA is valid for all
cally equivalent to the DIA only if the sweeping is negligible times since it accounts correctly for the sweeping effects.
ast—o, Since the MDIA is worked out in the Eulerian Furthermore, according to the MDIA, the asymptotic dynam-
frame, it is an interesting alternative to the complicated La-ics of (p(t)) depends dramatically dp andt, . Specifically,
grangian modifications of the DIA3]. provided only that eithelr, ort, is finite, the MDIA equation
We shall present the MDIA for the general case, therfor {p(t)) reduces, as—o, to a diffusion equation with an
apply it on the problem of the passive advection of a scalaeffective diffusion coefficientD, which, in the limit D,
>D,, depends on some combinationwf, |, andt, only
[see EQq.(22)]. However, if bothl, andt, are infinite, the
*Electronic address: eve2@cims.nyu.edu MDIA equation never reduces to a diffusion equation;
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the asymptotic dynamic is superdiffusive and non-Gaussiargvaluation of Q(t,t’) and P(t,t’) is restricted to some

and we will be able to quantify both these featurese Egs.
(23) and (24)]. In particular, sincd,=c° in the superdiffu-

simple cases. Yet, it may be proven that renormalization of
the series(9) may be achieved by appropriate approxima-

sive range, the large scale effects are essential, the sweepitigns for Q(t,t’) or P(t,t’). Kraichnan's DIA is one such

is never negligible and, hence, the DIA cannot be used.
We now present the MDIA for Eq.l). To this end, we
introduce first the evolution operatb(t|t’) defined as

p(r,t)=h(t|te)po(r). 5

Applying h(t|t") to the distributionS(r—r’) defines the
Green function of Eq.(1): g(r,t|r’,t")=h(t[t")s(r—r').
The operatoih(t|t’) satisfies Eq(1), which we write as

J ~
Eh(tlt')I[L(t)H\l(t)]h(tlt’), (6)
with the initial conditionh(t|t)=1, | being the identity op-
erator. In Eq.(6), \ is an ordering parameter introduced for
convenience and we have decompokgijl into an averaged
and a purely random part.(t)=(I(t)) and \T(t)=1(t)
—L(t). We shall derive from Eq.6) an equation for
H(tlt")=(h(tt')); from Eqg. (5), we have (p(r,t))
=H(t|tg)po(r) [assuming thatpy(r) is deterministi¢ and
H(t|t") is related to the averaged Green funct®re(g) of
Eqg. (1) as G(r,t|r’,t")=H(t|t’)8(r—r"). Introducing the
operatorHy(t|t’) satisfying

a
2 Ho(tt)=L(OHo(t[t"),  Hotlt)=1, @)

it follows that Eq.(6) may be rewritten as
t ~
h(t|t’)=Ho(t|t')+>\f dsHy(t|s)I(s)h(s|t’). (8)
t,

Upon iterating and averaging, E() leads to the following
infinite perturbation series expansion fa(t|t’):

H(t]t ) =Ho(t[t")+N2Hy(t]t" )+ N3Hg(t[t )+, (9)
whereH(t|t") was defined in Eq(7) and, e.g.,
t S
H2(t|t’)=Jt,dsft'ds’Ho(sb’)
X(T($)Ho(s[s)T(s"))Ho(s'[t").  (10)
Truncation of Eq.(9) at any order yields an approximation

for H(t|t") only valid on a finite time interval. Improvement
is obtained by partial resummatidier renormalizatioh of

approximation forQ(t,t’) [see Eq.(153]. In this Rapid
Communication, we shall rather work with Ed.1b) and the
MDIA will be obtained as some approximation féx(t,t’)

[see Eq(15b)]. The expansions d(t,t’) andP(t,t’) may
be easily found from that dfi(t|t’) and Eq.(11)

N2Q(t,t")=N2Qu(t,t") +N3Q4(t,t ) +---, (129
N2P(t,t ) =N2P,(t,t ) +N3P5(t,t ) +-+-,  (12b

where up to ordei?
Qa(t,t) =(T(OH(Lt)T(t"), (139

t ~ ~
Pz<t,t'>=ft,ds<l<t>Ho<t|s>|<s)>Hal<t|s>. (13D

In Eq. (13b), the operatorH,*(t|t") is the inverse of
Ho(tlt") [i.e., Ho(t|t")Hq *(t[t")=Hg *(t|t")Ho(t]t")=1].
Expansion(12b) is the so-called time-ordered cumulant ex-
pansion[2]. Truncation of Eqs(128 and (12b) at order\?
leads respectively to the quasinormal approximatiQiNA)

and the quasilinear approximatiaiQLA). Roughly, both
these approximations are valid for all times Kf(t|t")
evolves on a time scale that is much longer than the time

scale associated witl(t). For approximations based on Eq.
(113, it is well-known that reworking the series f@(t,t")

as a series it (t|t") rather tharH(t|t’) leads to improved
approximations, since it achieves a further resummation of
the original serie$9). We claim that a similar improvement

is obtained for approximations based on Efjlb) by re-
working the series foP(t,t’) as a series imH(t|t’) rather
thanHq(t|t’), since it also achieves a further resummation
of the serieq9). This gives

A2Q(t,t")=N2Q,(t,t" ) +A\3Q4(t,t ) ++++, (143
AZP(t,t)=N2P,(t,t" )+ N3P4(t,t") ++-+, (14D

where up to ordek?
Qx(t.t) =(TMOHE)T(t"), (153
Ez(t,t’)zJtt/ds(l(t)H(tls)T(s))H‘1(t|s), (15b)

the serieg9). One way to proceed is as follows. Consider the

following two equations foH (t|t’):

iH(t|t’)=L(t)H(t|t’)+A2ftdsQ(t,s)H(s|t’),
at t!
(113

%H(t|t’)= L(H(tt")+N2P(t,t)H(tt"). (11b

With appropriate definitions for the operat@(t,t’) and

In Eq.(15b), the operatoH ~1(t|t") is the inverse ofH (t|t")
[i.e., H(t|t")H X(t]t")=H"Y(t|t")H(t|t")=1]. Truncation
of Eq. (148 at order\? is the DIA; truncation of Eq(14b) at
order\? will be referred to as the MDIA. Explicit equations
for (p(r,t)) or G(r,t|r’,t") may be obtained by applying Eq.
(12) on pg(r) or 8(r—r"), respectively.

The MDIA deserves the following comments:

(i) The MDIA is a well-defined approximation even
though the averaged dynamics is usually irreversible and the
inverse evolution operator H!(t|t') appears in Eq. (15b).

P(t,t') both equations are exact even if formal, since exactn particular, the reversibility ofH(t|t’), which we assume
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here, does not require the averaged dynamics to be revergith the initial conditionsG(k,0)=1 and where

ible. Of course, for irreversible dynamics, the inverse of the

averaged Green function, which would be defined as ; x G(p,s)

G Y t|r',t")y=H"1(t]t") 8(r—r"), does not exist, meaning n(k,t)=J dsJ dppK(k,p,s) ——, (17
simply thats(r—r’) does not belong to the domain of defi- o Jo G(k,s)

nition of the operatoH ~1(t|t"). Yet, this leads to no diffi-

culty for the MDIA becauseS(r—r') belongs to the domain 2 (k+p sinf(k,q)
of definition of the operatoH ~(t|s)H(t|t"), sincet’<s K(k,p,t)—; ‘k_p‘dq kq E(a.0), (18)
=t.

(il) The MDIA and the DIA are asymptotically equivalent in which sink,q) is the sine of the interior angle opposite to
if and only if the averaged dynamics is approximately Mar-p in a triangle of sidek, p andg.
kovian as ts«. Non-Markovianity is H(t|t") As a first straightforward consequence of E#6), we
#H(t|t")H(t"|t") (t=t"=t') and is implied by both the note that for a pure sweeping flow(r,t)=wv(t), for which
DIA and the MDIA[unlessl (t) is a white-noise process and E(k,t)= 3 8(k){v(t)-v(0)), the MDIA is exact since it
even thoughh(t|t’)=h(t[t")h(t"|t") by definition. Thus, leads to the Gaussian
the termH ~(t|s)H(t|t’) in the MDIA equation cannot be
approximated by the terrdi(s|t’) in the DIA equation un- G(k,t) = K*Dot-kw(t) (19
less the averaged dynamics becomes Markoviah-as.
Below, we relate the relaxation to Markovianity to the ab-wherew(t)=3/4ds(t—s)(v(s)-v(0)). In contrast, the DIA
sence of sweeping ds— . equations are wrong in this case: they can be solved analyti-
(i) In contrast with the DIA, the MDIA is valid for the cally in the time representation only for a time-independent
short times.Direct calculation shows that, in contrast with sweeping flow, v(r,t)=v, where they lead toé(k,t)
the DIA, the MDIA is exact for a Gaussidfit) in Eq.(1) as  =J,(2kv,t)/(kv,t) [here,J;(x) is a modified Bessel func-
long as the following local approximation is valid: {ion] [4], while the exact resul€l9) is in this caseG(k,t)
I(r,dlar,t)~I(r",aldr,t), wherer’ is some fixed positionin 25\ (112,22 lso that. ift i I h
phase space. Since initialty(r,t|r’,t)=8(r—r’), this local ) = . Note also that, ift is small enough,
approximation is valid on some time interval, and the MDIA G(k,t) is mostly flat compared to the spectruigk,t), and
is indeed valid for the short times. the flow can be approximated by a pure sweeping flow. Con-
(|V) The MDIA accounts for the Sweeping more Correcﬂysequently,. in contrast with the DIA, the MDIA is valid for
than the DIA.First, it results from pointiii) that, in contrast the short times.
with the DIA, the MDIA is exact for pure sweeping; thatis, 10 further argue t_hat the MDIA accounts correctly for the
if |(r,a/ar,t)=1(d/dr,t), Gaussian. Second, since the MDIA Sweeping, we consider the effect on EG6) of the RGT
is local in time (and not convolutive, like the DIA it ap-  v(r.t)—v(r.t)=v(r—ut,t)+u, where the constant velocity
pears to account more correctly than the DIA for the averagél IS @ statistically isotropic Gaussian random variable, statis-
effect of a so-called random Galilean transformati®@@T)  tically independent ow(r,t) and whose mean square value
[3]; that is, I(r,d/dr,t)—I(r—vt,d/dr,t)—v-aldr, where in any direction isu?. The RGT adds a term k?u?G(k,t)
the constant is some Gaussian random variable statisticallyon the right-hand-side of E16), and from Eq.(17) it fol-
independent on(t). Note however that since the MDIA is lows that the effect of the transformation may be accounted

worked out in an Eulerian and not a Lagrangian frame, ittor by G(k,t)— G(k,t)=b(k,t)G(k,t) for some factor
cannot account exactly for a RGT. b(k,t). Furthermore, direct calculations from Eq$6)—(18)

~ As an illustration, we now apply the MDIA on Eq2),  show that for both short and asymptotic timégk,t) re-
i.e., on the specific problem of the advection a scalar quantityjyces to the exact form it must have,

by a random velocity fieldfor the predictions of the DIA,

see, e.g., Ref4]). Owing to the statistical isotropy and sta- b(k,t):e%lmkzuftz, (20)
tionarity of the velocity fieldv(r,t), it follows that H(t|t")

=H(t—t’) and H(t)8(r—r")=G(|r—r'|,t). Here G(r,t) Equation(20) should be observed for all tim¢3]. However,
may be interpreted as the probability density that a particléor intermediate times, the MDIA predictzery) small de-
randomly advected by(r,t) and subject to molecular diffu- parture ofb(k,t) from the Gaussian factdg0).
sionisinr+r’ attimet+t’ if it was inr’ at timet’. Also, Consider now the asymptotic solution of E46). Since

the average of the 30’|Uti0” of Eq2) is (p(r.t))  G(k,t) becomes more and more peaked arokind as time
=J[dr'G(|r—r'|,t=t) po(r'). Introducing the Fourier rep- goes on, the long time solution of E€L6) mainly depends

resentation [via the factorpK(k,p,t)] on the leading term of the series
ik expansion ink=0 of the energy spectrum. Without losing
R * sin(kr i i
G(k,t)=477f drr? fEr )G(r,t), much in generality, we shall take
0

E(k,D)=viN, (N K)¥O(t/7,), N\K<1, (21)
the MDIA leads after some manipulations to for some functiond(t/r,). Strictly speaking, we should re-
strict to the range- 1<« in order to ensure th& integra-
bility of E(k,t); however, owing to the normalizatig8) of
E(k,t), the limit a=—1 of Eq. (21) can be interpreted as

d

- G(k,t)=—KI Do+ n(k,t)]G(kt), (16)
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wherec>0 is a numerical constant. The expressionff()r)

=30v25(k)6(t/7,). In Eq. (21, \, and 7, have, respec- is rather cumbersome in this case, but we may prove that this

tively, the dimensions of a length and of a time, but thesgunction tends towards the Gaussiar‘é in both the limits
quantities should not be confused with the characteristiq,=1 anda=—1 [the latter limit is exact; we recover Eq.

length scald, and time scalé, introduced in Eq(4). Spe-

cifically, A, may only be identified with, if the correspond-

ing integral in Eq.(4) is finite; that is, if I<« in EQ.(21). In
contrast,|, = if —1<a<1. Similarly r, may only be
identified witht, if 6(t/7,) is integrable.

Using Eq. (21) in Egs. (16)—(18), one may show that

G(k,t) is asymptotically self-similar on all thé range

where this function differs significantly from zero, in the

sense that fot>min{\, /v, ,7.} it scales like

G(k,t) ~T[k\(Z(D)],

where{(t) is the particle displacement at timeneasured in

any particular direction. The explicit forms ¢¢2(t)) and

f(x) depend on the spectrum. Provided only that eitQeor
I, are finite, they are

(£%(1))~2D.t,

Thus, the process is Gaussian and diffusivet-asc, and

2

f(x)=e ", (22

(19 for the pure sweeping flojvFurthermore, the departures
from Gaussianity are rather weak in all the rangd<a«
<1, with a maximum around=0, and may be quantified
by the flatness factor, which is estimated as

(Sfv) - 1-a?

m 20y " 56-a b

Thus, the distributiorG(r,t) has less weight in the tail be-
yond its mean than a Gaussian distribution, an effect presum-
ably related to some amounts of trapping of the particle.
Higher moments can be estimated as well, and suggest that
G(r,t) is approximately Gaussian far of the order of
(£?(t)) but has the shape of a quenched exponentiak for
>([?(t)) (we were unable to give a rigorous proof of this
point, however. Note also that in the present range, the
MDIA is not asymptotically equivalent to the DIA since the
dynamics is not Markovian as—. Of course, since the
sweeping is never negligible here, the DIA is out of its range
of validity [6]. Specifically, even though the DIA leads to the

(24)

G(r,t) satisfies a standard diffusion equation. The explicitscalings(23) for the particle mean square displacemetj t

value ofD, depends orE(k,t) andDg, but if Dy<D,, its
scales as D*Ocvft* if t, at least is finite andt,

overestimates the departure from Gaussianity in all the range
—1=sa<1, and, in particular, it fails to predict the relax-

<min{l, \,Mv,, and asD,xuv,l, if |, at least is finite and ation towards Gaussianity in the limit=1.

|,<v, minft,,7,}. This second scaling is missed by the

Since the MDIA is exact for short times and gives reason-

QNA and the QLA, but is predicted by the DIA. Indeed, Eq. able results for long times, it leads to the confidence that, in
(22) implies that the motion is asymptotically Markovian and contrast with the DIA, it is valid for all times. This conclu-

the MDIA and the DIA are thus equivalent &s>o. Note

sion can be confirmed by numerical integration of ELf).

also that the finiteness d¢f may be proven necessary and For instance, for flows leading to standard diffusion, 8)

sufficient for standard diffusion iE(k,t)=E(k) (i.e., t,
=) andDy>0 [5].

On the other hand, if both,=« andt,=«, we obtain
the superdiffusive scalings

(22(D))~co N tIn(u,t/N,)  (a=1),

c (23
<§2(t)>”C)\E(v*t/)\*)4/(3+a)

(—1<a<l),

reproduces for all times the results observed in the numerical
simulations of particles motion in random floj], and, in
particular, it accounts for the observed departures from
Gaussianity at intermediate timdsvith a flathess factor
smaller than 1
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